- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Samuel, Arthur G. (2)
-
Baese-Berk, Melissa M. (1)
-
Bogaerts, Louisa (1)
-
Christiansen, Morten H (1)
-
Dorsi, Josh (1)
-
Frost, Ram (1)
-
Holt, Lori L (1)
-
Magnuson, James S (1)
-
Rosenblum, Lawrence D. (1)
-
Samuel, Arthur G (1)
-
Zadoorian, Serena (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Statistical learning (SL) is typically assumed to be a core mechanism by which organisms learn covarying structures and recurrent patterns in the environment, with the main purpose of facilitating processing of expected events. Within this theoretical framework, the environment is viewed as relatively stable, and SL ‘captures’ the regularities therein through implicit unsupervised learning by mere exposure. Focusing primarily on language— the domain in which SL theory has been most influential—we review evidence that the environment is far from fixed: it is dynamic, in continual flux, and learners are far from passive absorbers of regularities; they interact with their environments, thereby selecting and even altering the patterns they learn from. We therefore argue for an alternative cognitive architecture, where SL serves as a subcomponent of an information foraging (IF) system. IF aims to detect and assimilate novel recurrent patterns in the input that deviate from randomness, for which SL supplies a baseline. The broad implications of this viewpoint and their relevance to recent debates in cognitive neuroscience are discussed.more » « lessFree, publicly-accessible full text available February 24, 2026
-
Baese-Berk, Melissa M.; Samuel, Arthur G. (, Attention, Perception, & Psychophysics)
-
Dorsi, Josh; Rosenblum, Lawrence D.; Samuel, Arthur G.; Zadoorian, Serena (, Journal of Experimental Psychology: Human Perception and Performance)
An official website of the United States government
